Tubulin cofactor A gene silencing in mammalian cells induces changes in microtubule cytoskeleton, cell cycle arrest and cell death.

نویسندگان

  • Sofia Nolasco
  • Javier Bellido
  • João Gonçalves
  • Juan Carlos Zabala
  • Helena Soares
چکیده

Microtubules are polymers of alpha/beta-tubulin participating in essential cell functions. A multistep process involving distinct molecular chaperones and cofactors produces new tubulin heterodimers competent to polymerise. In vitro cofactor A (TBCA) interacts with beta-tubulin in a quasi-native state behaving as a molecular chaperone. We have used siRNA to silence TBCA expression in HeLa and MCF-7 mammalian cell lines. TBCA is essential for cell viability and its knockdown produces a decrease in the amount of soluble tubulin, modifications in microtubules and G1 cell cycle arrest. In MCF-7 cells, cell death was preceded by a change in cell shape resembling differentiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Immunocytochemical Study on Microtubule Reorganization in HL-60 Leukemia Cells Undergoing Apoptosis

Background: Microtubules (MT) are important components of cell cytoskeleton and play key roles in cell motility mitosis and meiosis. They are also the targets of several anticancer agents which indicating their importance in maintaining cell viability. Microtubular reorganization contributing to apoptotic morphology occurs in normal and neoplastic cells undergoing apoptosis induced by cytotoxic...

متن کامل

Preclinical Development Silencing of Tubulin Binding Cofactor C Modifies Microtubule Dynamics and Cell Cycle Distribution and Enhances Sensitivity to Gemcitabine in Breast Cancer Cells

Tubulin binding cofactor C (TBCC) is essential for the proper folding of aand b-tubulins into microtubule polymerizable heterodimers. Because microtubules are considered major targets in the treatment of breast cancer, we investigated the influence of TBCC silencing on tubulin pools, microtubule dynamics, and cell cycle distribution of breast cancer cells by developing a variant MCF7 cells with...

متن کامل

In-silico Investigation of Tubulin Binding Modes of a Series of Novel Antiproliferative Spiroisoxazoline Compounds Using Docking Studies

Interference with microtubule polymerization results in cell cycle arrest leading to cell death. Colchicine is a well-known microtubule polymerization inhibitor which does so by binding to a specific site on tubulin. A set of 3',4'-bis (substituted phenyl)-4'H-spiro[indene-2,5'-isoxazol]-1(3H)-one derivatives with known antiproliferative activities were evaluated for their tubulin binding modes...

متن کامل

In-silico Investigation of Tubulin Binding Modes of a Series of Novel Antiproliferative Spiroisoxazoline Compounds Using Docking Studies

Interference with microtubule polymerization results in cell cycle arrest leading to cell death. Colchicine is a well-known microtubule polymerization inhibitor which does so by binding to a specific site on tubulin. A set of 3',4'-bis (substituted phenyl)-4'H-spiro[indene-2,5'-isoxazol]-1(3H)-one derivatives with known antiproliferative activities were evaluated for their tubulin binding modes...

متن کامل

Microtubule dynamics, mitotic arrest, and apoptosis: drug-induced differential effects of betaIII-tubulin.

Overexpression of betaIII-tubulin is associated with resistance to tubulin-binding agents (TBA) in a range of tumor types. We previously showed that small interfering RNA silencing of betaIII-tubulin expression hypersensitized non-small cell lung cancer cells to TBAs. To determine whether betaIII-tubulin mediates its effect on drug-induced mitotic arrest and cell death by differentially regulat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FEBS letters

دوره 579 17  شماره 

صفحات  -

تاریخ انتشار 2005